

Carnegie Mellon University School of Computer Science

DeMuX: Data-efficient Multilingual Learning

Simran Khanuja¹, Srinivas Gowriraj², Lucio Dery¹, Graham Neubig¹

¹Carnegie Mellon University ²TikTok

Correspondence: skhanuja@andrew.cmu.edu

Research Question

<u>Given:</u>

- 1. Pre-trained multilingual model
- 2. (*Large amounts of*) unlabelled multilingual **source data**
- 3. (*Small amounts of*) unlabelled

Overview and benefits of proposed framework: DeMuX

Benefits: DeMuX works with...

2

- 1. No language identification 🔽
- 2. No linguistic feature information 🔽
- 3. No past model performance 🔽
- 4. Disjoint source/target languages 🔽

PCA Plot of Embedding Matrices

20

multilingual **target data**

4. Annotation **budget**

How do we select the **exact data points** to give to annotators for best performance in their **domain and target** languages, under a **fixed budget**, from a **multilingual source data** pool?

Experimental Setup and Key Results

Dataset	Single Target			Multi-Target			
	High-perf. Mid-perf.		Low-perf.	Geo Pool Low-Performing Pool			
UDPOS	French	Turkish	Urdu	Urdu Telugu, Marathi, Urdu Arabic, Hebrew, Japanese, Korean, Chinese, Persian, Tamil, Vietnamese, Urdu		XLM-R	
NER	French	Turkish	Urdu	Indonesian, Malay, Vietnamese	Arabic, Indonesian, Malay, Hebrew, Japanese, Kazakh, Malay, Tamil, Telugu, Thai, Yoruba, Chinese, Urdu	RemBERT	
XNLI	French	Turkish	Urdu	Bulgarian, Greek, Turkish	Arabic, Thai, Swahili, Urdu, Hindi		
TyDiQA	Finnish	Arabic	Bengali	Bengali, Telugu	Swahili, Bengali, Korean	InfoXLM	

<u>10,000 Budget, Five AL Rounds (XLM-R)</u>

Dataset	Strategy	High-perf.	Mid-perf.	Low-perf.	Geo Pool	Low-perf. Pool
	EN-FT	80	79.5	65.6	61	45.8
	GOLD	90.1	92.8	94.5	81.2	73.7
NER	BASE	85.4	87.6	84	80.6	62.8
	DeMuX _{KNN}	87.8	89.2	85.8	82.4	62.3
	$\Delta_{_{BASE}}$	2.4	1.6	1.8	1.8	-0.5
	EN-FT	81.8	77.3	69.9	80.1	73.4
	GOLD	81.6	79.5	70.3	81.6	76
XNLI	BASE	81.6	78.8	73	80.9	75.6
	DeMuX _{AVG}	83.7	79.9	75.3	82.2	77.1
	$\Delta_{_{BASE}}$	2.1	1.1	2.3	1.3	1.5
	EN-FT	78.9	73.2	79.9	80.7	78.5
	GOLD	81.2	83.8	83.7	84.7	81
TyDiQA	BASE	79.9	81.7	79.6	81.1	78.7
	DeMuX _{UNC}	80.8	82.9	80.3	81	77.8
	Δ_{BASE}	0.9	1.2	0.7	-0.1	-0.9

Key Takeaway: DeMuX beats baseline in 84% cases; proximity to target (lower distance) matters more for token-level tasks; informativeness (higher uncertainty) matters more for QA

Key Takeaway: Benefits are higher for lower budgets with diminishing returns

C

4

Further Analysis and Discussion

How does DeMuX fare on multilingual target pools?

- gains over baseline, but smaller on average than single target

Does the model select data from the same languages across tasks?

 No, eg.: for Urdu, data chosen from Hindi for NLI/POS; and Farsi/Arabic (script similarity) for NER.

What is the minimum budget for which we can observe gains in one AL round?

- Gains of up to 8-11 F1 for token-level, and 2-5 F1 points for NLI and QA
- Gains diminish as the budget increases

Do the selected data points matter or does following the language distribution suffice?

 performance declines when you replace selected data points with random data points while following the language distribution of selected points. Extended to generation tasks like MT (supported in github repo)

Testing on **unseen languages** during pre-training

- Model: MuRIL (trained on Indian languages)
- Languages:
 - Afrikaans (seen script)
 - Bulgarian (unscreen script but characters present in vocab)

Target	Top-3 langs selected by DeMuX	Baseline	DeMuX F
Afrikaans	German:28%, Estonian:19%, Finnish:13%	77.0	78.1
Bulgarian	Russian:81%, Greek:4.8%, Georgian:3.4%	39.9	51.9

Contact & Resources

https://github.com/simran-khanuja/demux