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● Why “vision” in multilingual NLP?

● Four types of multilingual image-text models
○ Cross-encoder based (understanding)
○ Dual-encoder based (retrieval)
○ Encoder-decoder based (understanding + text generation)
○ Diffusion based (image generation)

● For each type we will cover
○ Downstream task capabilities
○ Model Architecture
○ Pre-training data resources
○ Deep Dive into one model

● Discussion of biases

● Revisit motivation + Open questions

In this lecture we will talk about …
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Some concepts look the same across languages and cultures

List of Human Universals (Donald Brown, 1991); Psychological universals: what are they and how can we know?
Image Source: Google Search 
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Some may universally exist but yet look different

List of Human Universals (Donald Brown, 1991); Psychological universals: what are they and how can we know?
Image Source: Google Search 
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Some may not exist cross-culturally at all …

Some concepts are only understood within a cultural background

Culture: The way of life of a collective of people that distinguishes them 
from  other people (Mora, 2013; Shweder et al. 2007).

Pilota / Jai-alai ClavieSanxian / Shamisen

Source: Desmond Elliott’s LxMLS Slides

https://elliottd.github.io/vlprimer/lxmls2023.pdf
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As an anchor point for multiple languages for universal concepts
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As a mechanism to enhance cultural diversity within concepts
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To represent culturally unique objects/events beyond text  
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We will be looking at four types of image-text multilingual models that exist 
today. For each type of models, we will cover :

● Evaluation Tasks
● Model Architecture
● Data: Pre-training datasets and languages 
● Pre-training tasks

○ Deep-dive into a state-of-the-art model
● [Optional] Demo
● [Optional] Bias Discussion

Status quo

So what progress has been made thus far in the field to support research 
in image-text multilingual NLP?
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● Infer whether a text-hypothesis entails, 
contradicts, or is neutral to an 
image-premise.

● Comprised of: SNLI (Bowman et al., 2015), 
with its multimodal (Xie et al., 2019) and 
cross-lingual (Agic & Schluter., 2018) 
counterparts.

● English, Arabic, French, Russian, Spanish

Overview of Downstream Tasks (Understanding)

Cross-lingual Visual NLI (XVNLI) Cross-lingual Grounded QA (xGQA)

● Answer several types of structured 
questions about an image

● xGQA (Pfeiffer et al. 2022) which is 
translated from GQA (Hudson & 
Manning, 2019), into 7 languages

● MaXM (Changpinyo et al. 2022), 
automatically generate QA pairs from 
XM3600 for 7 langs

IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and Languages (Bugliarello et. al, ICML 2022)
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● Infer whether statement is true or false 
about a pair of images. 

● MaRVL (Liu et al., 2021): Dataset 
constructed from scratch by native 
speakers [EMNLP Best Paper]

● Indonesian, Mandarin, Tamil, Turkish, 
Swahili

Overview of Downstream Tasks (Understanding+Retrieval)

Multicultural V-L Reasoning Multi-X Retrieval

● xFlickr&CO.: 1000 from Flickr30K (Young et 
al., 2014) + COCO (Lin et al., 2014); captions 
crowdsourced for 7 langs

● WIT (Srinivasan et al., 2021): Wikipedia in 108 
languages (IGLUE covers 10)

● XM3600 (Thapliyal et al., 2022): Captions for 
3600 geographically diverse images in 36 
languages

IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and Languages (Bugliarello et. al, ICML 2022)
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● The task is to generate a caption for an 
image in a language of choice.

● Are image descriptions consistent across 
cultures? Research shows otherwise (Ye 
et al. 2023, Vossen et al., 2017).

● [Open Question] Beyond BLEU, CIDEr, 
how do we capture the cultural 
relevance of a caption?

Overview of Downstream Tasks (Generation)

Image Captioning

● The task is to generate an image given a 
multilingual caption

● Evaluation metrics include FID (can be biased 
due to training on ImageNet), and 
image-caption similarity using multilingual 
CLIP

● [Open Question] How do we capture cultural 
representativeness of output, while making 
sure the model is not stereotyping/biased?

Text → Image Generation
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Category 1: Multi-X Understanding (Cross-Encoding Based Models)

M3P: Learning Universal 
Representations via Multitask 
Multilingual Multimodal Pre-training 
(Ni et. al, CVPR 2021)

UC2 : Universal Cross-lingual 
Cross-modal Vision-and-Language 
Pre-training (Zhou et. al, CVPR 2021)

[CCLM] Cross-View Language 
Modeling: Towards Unified 
Cross-Lingual Cross-Modal 
Pre-training (Zeng et. al, ACL 2023) 

Image Encoder Cross-lingual Encoder

Cross-lingual Cross-modal Encoder

Multilingual Image-text Retrieval / VQA / NLI

https://arxiv.org/pdf/2006.02635.pdf
https://arxiv.org/pdf/2006.02635.pdf
https://arxiv.org/pdf/2006.02635.pdf
https://arxiv.org/pdf/2104.00332.pdf
https://arxiv.org/pdf/2104.00332.pdf
https://arxiv.org/pdf/2104.00332.pdf
https://arxiv.org/pdf/2206.00621.pdf
https://arxiv.org/pdf/2206.00621.pdf
https://arxiv.org/pdf/2206.00621.pdf
https://arxiv.org/pdf/2206.00621.pdf
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Deep Dive: CCLM (SoTA Encoder-based model)

[CCLM] Cross-View Language Modeling: Towards Unified Cross-Lingual Cross-Modal Pre-training (Zeng et. al, ACL 2023) 

https://arxiv.org/pdf/2206.00621.pdf
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Pre-training data for Multi-X understanding models

Data Resource 
Type

Multilingual (text) Multimodal 
(English-only)

Multi-X (translated)  Multi-X

Datasets
Wikipedia (100L); Wikimatrix (para; 20L); CC3M (en; 3.3M) CC3M (5L; 3.3M);

Models

M3P (Wikipedia) M3P (CC3M)

UC2 (CC3M-translated)

CCLM (Wikimatrix) CCLM (CC3M-trans)



16

Category 2: Multi-X Understanding (Dual-encoder Based Models)

MURAL: Multimodal, Multitask 
Retrieval Across Languages (Jain 
et. al, 2021)

Cross-Lingual and Multilingual 
CLIP (Carlsson et al., LREC 2022)

https://arxiv.org/abs/2109.05125
https://arxiv.org/abs/2109.05125
https://aclanthology.org/2022.lrec-1.739/
https://aclanthology.org/2022.lrec-1.739/
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Pre-training data for Multi-X understanding models

Data Resource 
Type

Multilingual (text) Multimodal 
(English-only)

Multi-X (translated)  Multi-X

Datasets
Wikipedia (100L); Wikimatrix (para; 20L); 
EOBT (wikimatrix+paracrawl+ europarl);

CC3M (en; 
3.3M); CC12M 

(en)

CC3M (5L; 3.3M); 
MSCOCO; GCC; VizWiz

WIT (101L), 
Alt-Text

Models

M3P (Wikipedia) M3P (CC3M)

UC2 (CC3M-translated)

CCLM (Wikimatrix) CCLM (CC3M-trans)

MURAL (EOBT) MURAL (CC12M) MURAL (Alt-Text)

mCLIP (COCO+GCC+ 
VizWiz)
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Category 3: Multi-X Understanding + Generation (Text)

Image Encoder Cross-lingual Encoder

Cross-lingual Cross-modal Encoder

Cross-lingual Cross-modal Decoder

一个男人骑着一匹棕色的马

(Visual tokens)

(Text in language L2)

A man rides a brown horse

(Text in language L1)

Multilingual Image-text 
Retrieval / VQA / NLI

PALI-X: On Scaling up a Multilingual 
Vision and Language Model (Chen et 
al., 2023)

ERNIE-UniX2: A Unified Cross-lingual 
Cross-modal Framework for 
Understanding and Generation (Yin 
et al, 2022)

mBLIP: Efficient Bootstrapping of 
Multilingual Vision-LLMs (Geigle et 
al., 2023)

https://arxiv.org/abs/2305.18565
https://arxiv.org/abs/2305.18565
https://arxiv.org/abs/2211.04861
https://arxiv.org/abs/2211.04861
https://arxiv.org/abs/2211.04861
https://arxiv.org/abs/2307.06930
https://arxiv.org/abs/2307.06930
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Deep Dive: mBLIP (Encoder-Decoder)

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models (Li et al., CVPR 2023)

Background: BLIP-2 Architecture

https://arxiv.org/abs/2301.12597
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Deep Dive: mBLIP (Encoder-Decoder)

mBLIP: Efficient Bootstrapping of Multilingual Vision-LLMs (Geigle et al., 2023)

https://arxiv.org/abs/2307.06930
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Deep Dive: mBLIP (Demo)

https://4c2e12edc5350ddb9f.gradio.live 

https://4c2e12edc5350ddb9f.gradio.live
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Pre-training data for Multi-X understanding models

Data Resource 
Type

Multilingual (text) Multimodal 
(English-only)

Multi-X (translated)  Multi-X

Datasets
Wikipedia (100L); Wikimatrix (para; 20L); 
EOBT (wikimatrix+paracrawl+ europarl);

CC3M (en; 
3.3M); CC12M 

(en)

CC3M (5L; 3.3M); 
MSCOCO; GCC; VizWiz

WIT (101L), 
Alt-Text

Models

M3P (Wikipedia) M3P (CC3M)

UC2 (CC3M-translated)

CCLM (Wikimatrix) CCLM (CC3M-trans)

MURAL (EOBT) MURAL (CC12M) MURAL (Alt-Text)

mCLIP (COCO+GCC+ 
VizWiz)

mBLIP 
(MSCOCO+WebCapFilt+ 

LLaVa (IFT)
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Category 4: Multi-X Generation (Image): diffusion-based models

ERNIE-ViLG 2.0: Improving Text-to-Image Diffusion 
Model with Knowledge-Enhanced 
Mixture-of-Denoising-Experts (Feng et al, CVPR 2023)

AltDiffusion: A Multilingual Text-to-Image Diffusion 
Model (Ye et al, 2023)

CLIP (Teacher)

Multilingual Encoder 
XLM-R (Student)

U-NET

https://arxiv.org/abs/2210.15257
https://arxiv.org/abs/2210.15257
https://arxiv.org/abs/2210.15257
https://paperswithcode.com/paper/altdiffusion-a-multilingual-text-to-image
https://paperswithcode.com/paper/altdiffusion-a-multilingual-text-to-image
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AltDiffusion (Outputs)

AltDiffusion: A Multilingual Text-to-Image Diffusion Model (Ye et al, 2023)

https://paperswithcode.com/paper/altdiffusion-a-multilingual-text-to-image
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Biases in image generation models

Inspecting the Geographical Representativeness of Images from Text-to-Image Models (Basu et. al, ACL 2023) 

https://arxiv.org/pdf/2305.11080.pdf
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Biases in image generation models

Multilingual Conceptual Coverage in Text-to-Image Models (Saxon et. al, ACL 2023) 

https://arxiv.org/pdf/2306.01735.pdf
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Do models leverage the universality of 
concepts to learn better representations for 
multiple languages in text?

a. [Open] Hard to define universality
i. [Proposal] Study similarities and 

differences in naturally occurring data 
from different countries/cultures?

b. [Open]  How do we measure cross-lingual 
alignment in an embedding space?

c. [Open] How can we piece out contributions 
of the textual and visual modality in learning 
a cross-lingual representation?

d. [Open] Hard to evaluate with high 
confidence

Let’s revisit our motivation in context of the prior work
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Do models incorporate diversity in 
representation?

a. Initial explorations suggest otherwise
b. [Open] How do you evaluate diversity?

i. Can you account for individual 
preferences?

ii. What is the tradeoff between diversity 
v/s stereotyping/bias?

c. [Open] Is it right to discern culture based on 
language input?

i. English is ubiquitous
BUT also

ii. Language has evolved within a culture 
and holds key information about it

Let’s revisit our motivation in context of the prior work
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Do models have a world view of concepts 
specific to every culture?

a. Probably not and may never will
i. Not everything is present digitally
ii. Cultures and concepts are constantly 

changing
b. [Open] How can we make models adept at 

keeping up with evolving concepts and 
cultures?

c. [Open] How can we incorporate cultures of 
communities that are not present digitally, 
into our models?

Let’s revisit our motivation in context of the prior work

Sanxian / Shamisen

musical instrument
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action
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Questions?

Thanks!


