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ABSTRACT

We introduce FLEURS, the Few-shot Learning Evaluation of
Universal Representations of Speech benchmark. FLEURS
is an n-way parallel speech dataset in 102 languages built
on top of the machine translation FLoRes-101 benchmark,
with approximately 12 hours of speech supervision per lan-
guage. FLEURS can be used for a variety of speech tasks,
including Automatic Speech Recognition (ASR), Speech
Language Identification (Speech LangID), Speech-Text Re-
trieval. In this paper, we provide baselines for the tasks based
on multilingual pre-trained models like speech-only w2v-
BERT [1] and speech-text multimodal mSLAM [2]. The goal
of FLEURS is to enable speech technology in more languages
and catalyze research in low-resource speech understanding.1

Index Terms— Massively Multilingual Speech Recog-
nition, Low-Resource Language Dataset, Speech Language
Identification, Speech Information Retrieval, Few-/Zero- Shot
Learning

1. INTRODUCTION

Speech technology has been rapidly evolved in the past
few years, with striking achievements nourished from self-
attention models [3, 4], pre-training approaches [5, 6, 7, 2],
and massively multilingual speech models [8, 9]. Methods
such as wav2vec 2.0 [5] have demonstrated strong perfor-
mance on the multilingual LibriSpeech dataset [10], in partic-
ular in the few-shot learning scenario with only 10 minutes of
labeled data [11]. The recent scaled-up multilingual wav2vec
2.0 model, XLS-R [12], has expanded similar few-shot capa-
bilities to many more languages, including low-resource ones.
By leveraging large-scale pre-training datasets like Multilin-
gual LibriSpeech (MLS) [13] and VoxPopuli [14], XLS-R
also provides representations that can be used across down-
stream tasks, with significant gains over previous baselines

1We publicly released the FLEURS dataset via TFDS at https://
tensorflow.org/datasets/catalog/xtreme_s and Hugging-
face at https://hf.co/datasets/google/fleurs. †Equal Con-
tributions. ‡Equal Advising Contributions. Work done while Alexis and
Simran were at Google.

on speech recognition, translation and classification. More
recently, mSLAM [2], a joint speech and text multilingual
pretrained model, outperformed XLS-R on speech transla-
tion and ASR and improved over speech-only baselines on
Speech-LangID.

Such recent progress has been made possible with the re-
lease of both large-scale pre-training and evaluation datasets
like Multilingual LibriSpeech [13], VoxPopuli [14], CoVoST-
2 [15], CommonVoice [16], and the re-use of existing datasets
like BABEL [17]. However, there are a couple of shortcom-
ings of the existing corpora: First, many datasets only contain
a small and often disparate set of languages, as shown in Ta-
ble 1. The majority of human spoken languages are often not
covered, yet many of them have millions of active speakers.
Second, since it requires great efforts to obtain high-quality
human transcriptions, the amount of supervised speech data
is usually limited. For example, only 1.8k hours out of 400k
hours in VoxPopuli [14] were transcribed by human. Alter-
natively, even we can produce transcripts by ASR models, it
may reinforce the system errors. Moreover, corpora may lack
of diversity in the content domains, speakers, etc.

Fleurs builds on Flores - a multi-way parallel text trans-
lation dataset across 102 languages, which allows us to col-
lect spoken utterances for each language directly and build a
multi-way parallel speech corpus to enable research on ASR,
LangID and Speech-to-speech translation. This is in con-
trast to most existing Speech translation corpora that use a
pipelined approach - taking spoken speech, transcribing it,
then translating it, then collecting spoken utterances in the tar-
get language and before finally aligning these segments back
to speech segments in the original language - which is often
a noisy process. Instead, we reached out to vendors who re-
cruited native speakers in each language. We ensured at least
7 speakers per language, and each sentence was spoken by 3
speakers. Speakers access the recording remotely from their
homes and were instructed to record audio in a quiet envi-
ronment either on their Android phone or a desktop/laptop
computer. We removed spoken utterances that did not match
the transcript or were too noisy in the quality validation phase
with a separate set of evaluators.
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With FLEURS, we aim to address these issues and to
catalyze research towards building massively multilingual
speech and text representations and their evaluation on a va-
riety of tasks. While there are a few other datasets containing
n-way parallel speech and text, including Europarl-ST [18],
MuST-C [19], mTEDx [20] and the CVSS corpus [21], to
the best of our knowledge, FLEURS is the only dataset span-
ning over 100 languages enabling research on a diverse set
of languages and domains. FLEURS is well-suited for sev-
eral downstream tasks including ASR, Speech-to-Text and
Speech-to-Speech Translation, Speech LangID, and Multi-
lingual Speech-to-Speech and Speech-to-Text Retrieval. We
compare FLEURS to existing common public multilingual
corpora in Table 1.

A few key properties of FLEURS to note:

• FLEURS contains n-way parallel speech and text in 102
languages, with a particular focus on the low-resource lan-
guages (> 80% data), across seven geographical groups.

• FLEURS provides natural human speech and high quality
transcripts for each language with strong quality control.
Three speakers spoke each sentence, and then evaluators
validated whether each of the spoken utterances matched
the transcript.

• FLEURS spans a wide range of language groups, writing
systems, and linguistic families.

• FLEURS uses a bottom up approach of collecting spoken
utterances for aligned segments, while most other datasets
are aligned at a document level with automatic segmenta-
tion and alignment for segments; we applied strict quality
control to deliver high-quality supervised parallel data.

In addition to describing the dataset, we provide baselines
for Speech-LangID, ASR and Speech-Text retrieval (both
Speech-to-Text and Text-to-Speech retrieval) by fine-tuning
the multilingual w2v-BERT [1] and the mSLAM [2] models
on these tasks.

2. DATASET

2.1. Speech Data Collection

We start with the FLoRes-101 dataset.2 FLoRes-101 contains
3001 sentences extracted from English Wikipedia and these
sentences have been translated in 101 languages by human
translators. Because the test set of FLoRes-101 is not pub-
licly available, we only use the dev and devtest sets, which
contain 2009 sentences in total. The data is split into train,
development (dev) and test sets with disjoint speakers, with a
target ratio of utterance numbers of 7:1:2. For each sentence

2Note: For clarity we have renamed FLoRes “Chinese (Simp)” to “Man-
darin Chinese” (code “cmn”) and “Chinese (Trad)” to “Cantonese Chinese”
(code ”yue”).

in the 102 languages (101 counted in FLoRes plus English),
we collected three recordings by three different native speak-
ers, with at most 70% from any one gender where possible.

We apply careful quality control for the data: each record-
ing was evaluated by additional workers to assess whether it
corresponded to the input sentence. Invalid recordings were
discarded, leaving zero to three recordings per sentence in the
final dataset. In the first version of the dataset, 21.5% of the
sentences are missing because none of the three recordings
were validated. We plan to fill these gaps in the future ver-
sions of the dataset. All recordings are kept as they-are, from
quiet or noisy environments, without data augmentations. The
speech recordings use a sampling rate of 16kHz, the sample
encoding is 32-bit float PCM. All the utterances are within 30
seconds.

2.2. Textual Data

For source transcripts, we reuse the transcripts produced by
human annotators from [24]. We maintain the English trans-
lated transcripts, which are useful for tasks such as multi-
modal speech translation evaluations.

The variety of orthographic symbols of languages com-
plicates the tokenization process. For example, Chinese text
in both traditional and simplified scripts does not have space
between tokens. Depending on the transcribers, Japanese and
Korean may or may not contain space irregularly. To ease
the pain for other researchers and facilitate apple-to-apple
comparisons and reproducibility, we provide the tokenized
versions of the sentences. We apply NFC (https://en.
wikipedia.org/wiki/Unicode_equivalence#
Normalization) and then FST [25] normalization to each
sentence, lower-case, normalize and remove punctuations.
We also split words into characters, and use the symbol | to
indicate word boundaries. For each sentence, three versions
are provided: the original raw transcript (SRC RAW), the
preprocessed version (SRC NORM) and its character-based
version (SRC CHAR), which should be used for ASR.

To establish the baseline, we use a universal vocabulary
of characters as our modeling and evaluation unit in this pa-
per. Among the possible modeling units (e.g. character, word-
piece, sentence-piece. etc.) for massively multilingual ASR,
this requires the least resources to build, and matches a com-
mon evaluation metric (i.e. character error rate (CER)).

2.3. Taxonomy and Statistics

By construction, FLoRes sentences also cover a diversity in
domains from Wikipedia, including nature, politics, science,
travel, sports etc. Each sentence also has an associated integer
“index” between 1 and 2009, which can be used to recover the
n-way parallelism from one language to another (i.e. sentence
i in language A is the translation of sentence i in language B).

There are multiple ways to categorize languages. The lan-
guages of FLEURS cover 16 language families (distribution

https://en.wikipedia.org/wiki/Unicode_equivalence#Normalization
https://en.wikipedia.org/wiki/Unicode_equivalence#Normalization
https://en.wikipedia.org/wiki/Unicode_equivalence#Normalization


Data Languages Duration Domains Speech Type Transcripts Parallel text Parallel speech

Europarl-ST [18] 6 0.5k hrs Parliament Spontaneous Yes Yes No
MLS [13] 8 50.5k hrs Audiobook Read Yes No No
MuST-C [19] 9 0.4k hrs TED talks Spontaneous Yes Yes No
mTEDx [20] 9 1k hrs TED talks Spontaneous Yes Yes No
CVSS [21] 22 1.1k h Open domain Read/Synthetic Yes Yes Yes
CoVoST-2 [15] 22 2.9k hrs Open domain Read Yes Yes No
VoxPopuli [14] 24 400k hrs* Parliament Spontaneous Partial Partial Partial
BABEL [17] 25 2k hrs Conversational Spontaneous Yes No No
CommonVoice [16] 93 15k hrs Open domain Read Yes No No
Voxlingua-107 [22] 107 6.6k hrs YouTube Spontaneous No No No
CMU Wilderness [23] 700 14k hrs Religion Read Yes Yes Yes
FLEURS (this work) 102 1.4k hrs Wikipedia Read Yes Yes Yes

Table 1. A comparison of commonly used datasets for multilingual speech representation learning, ASR, Speech Translation
and Speech-LangID. CommonVoice statistics as on 24th May 2022. *VoxPopuli only has 1.8k hours transcribed speech.

Data Statistics WE EE CMN SSA SA SEA CJK All

train speech hours 231h 134h 116h 237h 124h 112h 32h 987h
dev speech hours 29h 18h 14h 24h 16h 14h 4h 120h
test speech hours 68h 43h 33h 58h 37h 35h 9h 283h
train transcript tokens 1475k 772k 630k 1072k 699k 525k 405k 5578k
dev transcript tokens 184k 107k 75k 116k 93k 65k 51k 692k
test transcript tokens 443k 260k 181k 272k 210k 158k 116k 1640k

Table 2. Statistics for speech and transcript data in FLEURS.
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Fig. 1. Distributions of language families in FLEURS (y-axis
is the count).

shown in Figure 1), and 27 unique writing systems (distribu-
tion shown in Figure 2). We grouped languages along with
their geographical areas: Western Europe (WE), Eastern Eu-
rope (EE), Central-Asia/Middle-East/North-Africa (CMN),
Sub-Saharan Africa (SSA), South Asia (SA), South-East
Asia (SEA) and China/Japan/Korea (CJK). In Table 2, we
present the basic statistics of FLEURS data per geographical
group. See the supplement material for a full list of meta in-
formation (ISO codes, language families, estimated numbers
of speakers, etc.)
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Fig. 2. Distributions of writing systems in FLEURS (y-axis
is the count).

3. TASK BASELINES

3.1. Experimental Setup

FLEURS enables evaluations for several core speech tasks.
In this paper, we focus on speech recognition, speech lan-
guage identification and speech-text retrieval. Training a giant
model from scratch only on the FLEURS dataset will easily
overfit. Instead, we adopt the trendy pre-training and fine-
tuning methodology [7, 1, 2] to build the massively multilin-
gual baselines.
Multilingual Speech-only Pre-training: Multilingual pre-
trained models have achieved significant gains in a range of
NLP and ASR tasks. We initialize fine-tuning from a 600M
parameter wav2vec-BERT [1] model, which had been pre-
trained on 429k hours unlabeled speech data in 51 languages
pooling from VoxPopuli [14], MLS [13], CommonVoice [16]
and BABEL [17]. Pre-training for this baseline (dubbed w2v-
bert-51 (0.6B)) is speech-only.
Multilingual Multimodal Pre-training: In addition to pre-



train on speech data, incorporating textual and speech-text
data into pre-training allows for transfer learning across the
two modalities [13]. We explore fine-tuning from a multilin-
gual model which has been pre-trained with the same speech
data, and 10TiB of unlabeled text from mC4 corpus which in-
cludes 101 languages [26]. The speech-text pre-trained model
consisted of 600M parameters, dubbed mSLAM (0.6B). We
followed [2] for pre-training and fine-tuning configurations.

3.2. Seen Languages and Unseen Languages

The languages for which speech data was available during
pre-training are referred to as seen languages. There are 54
seen languages:

• WE (17 languages): American English (en), Catalan (ca),
Croatian (hr), Danish (da), Dutch (nl), Finnish (fi), French
(fr), German (de), Greek (el), Hungarian (hu), Irish (ga),
Italian (it), Latin American Spanish (es), Maltese (mt), Por-
tuguese (pt), Swedish (sv), Welsh (cy)

• EE (12): Bulgarian (bg), Czech (cs), Estonian (et), Geor-
gian (ka), Latvian (lv), Lithuanian (lt), Polish (pl), Ro-
manian (ro), Russian (ru), Slovak (sk), Slovenian (sl),
Ukrainian (uk)

• CMN (7): Arabic (ar), Kazakh (kk), Kyrgyz (ky), Mongo-
lian (mn), Pashto (ps), Persian (fa), Turkish (tr)

• SSA (3): Ganda (lg), Swahili (sw), Zulu (zu)

• SA (7): Assamese (as), Bengali (bn), Hindi (hi), Oriya (or),
Punjabi (pa), Tamil (ta), Telugu (te)

• SEA (5): Cebuano (ceb), Indonesian (id), Lao (lo), Thai
(th), Vietnamese (vi)

• CJK (3): Cantonese (yue), Japanese (ja), Mandarin (cmn)

Languages which do not have any pre-training speech data
are referred to as unseen languages. There are 48 unseen lan-
guages:

• WE (8): Asturian (ast), Bosnian (bs), Galician (gl), Ice-
landic (is), Kabuverdianu (kea), Luxembourgish (lb), Nor-
wegian (nb), Occitan (oc)

• EE (4): Armenian (hy), Belarusian (be), Macedonian (mk),
Serbian (sr)

• CMN (5): Azerbaijani (az), Hebrew (he), Sorani-Kurdish
(ckb), Tajik (tg), Uzbek (uz)

• SSA (17): Afrikaans(af), Amharic (am), Fula (ff), Hausa
(ha), Igbo (ig), Kamba (kam), Lingala (ln), Luo (luo),
Northern-Sotho (nso), Nyanja (ny), Oromo (om), Shona
(sn), Somali (so), Umbundu (umb), Wolof (wo), Xhosa
(xh), Yoruba (yo)

• SA (7): Gujarati (gu), Kannada (kn), Malayalam (ml),
Marathi (mr), Nepali (ne), Sindhi (sd), Urdu (ur)

• SEA (6): Filipino (fil), Javanese (jv), Khmer (km), Malay
(ms), Maori (mi), Burmese (my)

• CJK (1): Korean (ko)

Text training data utilized in pre-training includes most lan-
guages, except the following 20 text-unseen languages:

• WE (6): Asturian (ast), Bosnian (bs), Kabuverdianu (kea),
Luxembourgish (lb), Norwegian (nb), Occitan (oc)

• CMN (1): Hebrew (he)

• SSA (9): Fula (ff), Ganda (lg), Kamba (kam), Lingala (ln),
Luo (luo), Northern-Sotho (nso), Oromo (om), Umbundu
(umb), Wolof (wo)

• SA (2): Assamese (as), Oriya (or)

• SEA (1): Lao (lo)

• CJK (1): Cantonese (yue).

4. DOWNSTREAM TASKS

4.1. Speech Recognition

To build ASR baselines, we add a decoder which consists
of two LSTM[27] layers to fine-tune from pre-trained mod-
els, using a Connectionist Temporal Classification (CTC) [28]
loss. The baselines use a 6100-character vocabulary which
was built from the SRC NORM field of the data. We multilin-
gually fine-tune on all 102 locales, and report results for both
speech-only and speech-text pre-trained models. Our finetun-
ing parameters follow [2]. We evaluate the fine-tuned ASR
models for all locales in terms of character error rate. The lan-
guage identification labels are not included in ASR modeling,
and there is no language model used for hypothesis scoring.

4.1.1. Correlation with Language Geographical Groups

As shown in Table 3, European language groups (WE and EE)
obtain better CER than the other groups, which was expected
in part due to the larger amounts of unlabeled data in the two
groups of languages from MLS and VoxPopuli. CMN, SSA,
SA and SEA observe moderate CERs, while CJK gets the
highest group average CERs.

Reducing the recognition error rates for other geographi-
cal groups is a key direction for future work, and understand-
ing the differences arising from pre-trained models can be
helpful. It is observed that fine-tuning from a speech-text pre-
trained model leads to 0.5% regression in CER as compared
to fine-tuning from a speech-only pre-trained model. Most
degradation is observed in SA, SSA and CJK, which are three
languages groups consist of rich writing systems. In other
geographical groups, mis-recognized characters from a dif-
ferent writing system occur less frequently. Further breaking
down the distributions of error types, substitution errors are
dominating across all the groups, which is a common error



Model WE EE CMN SSA SA SEA CJK Avg.

w2v-bert-51 (0.6B) 9.5 9.1 13.0 13.6 17.4 12.4 30.5 12.9
mSLAM (0.6B) 9.5 9.1 13.2 14.3 19.0 12.7 32.5 13.4

Table 3. Speech recognition - FLEURS Massively multi-
lingual ASR baselines, reporting % CER (↓), by geographical
group.

Model WE EE CMN SSA SA SEA CJK Avg.

Speech recognition CER for speech seen languages

Number of languages 17 12 7 3 7 5 3 54

w2v-bert-51 (0.6B) 9.9 8.7 11.6 10.6 11.7 14.1 34.0 12.9
mSLAM (2B) 9.7 9.0 10.9 11.2 12.7 14.5 36.4 13.4

Speech recognition CER for speech unseen languages

Number of languages 8 4 5 17 7 6 1 48

w2v-bert-51 (0.6B) 8.8 10.1 15.0 14.2 23.0 11.0 20.1 14.0
mSLAM (0.6B) 8.9 9.4 16.4 14.9 25.3 11.2 20.6 14.8

Table 4. Speech recognition on speech seen and unseen
languages, reporting % CER (↓), by geographical group.

pattern in multilingual ASR [29], especially when no explicit
language id information was incorporated. For SA, the group
seeing the second highest substitution error rate: most sub-
stitutions come from Urdu. Urdu is acoustically similar to
Hindi, so many Urdu utterances were predicted in Devana-
gari script, while the reference texts are in the Perso-Arabic
script. CJK languages are known for the vast number of ho-
mophones in speech, which adds difficulties in selecting the
correct character without aid from language models. There
are a couple of ways to improve, such as: to include the lan-
guage specific information, to utilize language model fusion,
and to apply automatic transliteration to normalize the output
writing systems before calculating CER [30].

4.1.2. Differences in Seen and Unseen Speech Languages

Experimental results in Table 3 show that fine-tuning from
multimodal pre-training is overall slightly worse than fine-
tuning from speech-only pre-training (similar to the patterns
observed in [2]). Particularly, it lags behind more for the
unseen languages (Table 4). Most gaps come from SA,
SSA, and CMN groups. The exception is EE group, where
fine-tuning from multi-modal pre-training outperforms the
speech-only baseline. The differences indicate that multi-
modal and speech-only pre-training can be more beneficial
for certain languages. Specifically, for languages which were
not seen in pre-training, a large fraction of them observes a
test CER worse than global average due to fine-tuning on very
limited amount of supervised data. These observations align
with previous findings in [12]. Both CJK groups observed
the highest error rates, likely caused by the need for a larger
vocabulary of characters to reduce substitution errors.

In addition, for the unseen languages which achieved a

Fig. 3. Matrix of geographical groups of true language labels
vs. groups of languages predictions, on the test utterances
mis-classified by mSLAM (0.6B) speech langID model.

lower CER than average, most of them use Latin or Cyrillic
script based writing systems. Interestingly, unseen languages
which use scripts other than the two systems can still ob-
tain good CER: for example, ml in (Malayalam script), kn in
(Kannada), gu in (Gujarati), ne np (Devanagari). The success
in recognizing unseen Malayalam, Kannada, Gujarati, Nepali
can potentially be attributed to other Indian language data
(bn in, te in, pa in, as in, ta in) presented in the pre-training.

4.2. Speech Language Identification

For the LangID task we ensure that the train / dev / test
splits have different speakers. We fine-tune our models on
Speech LangID classification following [2]. As shown in
Table 5, fine-tuning from mSLAM obtains 73.3% macro-
average accuracy on FLEURS LangID, while fine-tuning
from w2v-bert-51 (0.6B) obtains 71.4% respectively.

The group average accuracy decreases in the order of:
CJK > WE > EE > CMN > SEA > SSA > SA. This
could be due to the following reasons: (1) there are only four
languages in the CJK group, they are relatively easy to distin-
guish from each other and from languages in the other groups;
(2) Most of the data seen during pre-training is from West-
ern European and Eastern European languages; (3) CMN,
SEA, SSA and SA are geographical regions which are known
for language diversity, but with limited amounts of publicly
available pre-training data. We also observed that it is im-
portant to have a language’s speech data presented in the pre-
training, in order to achieve a good identification accuracy
during speech LangID fine-tuning. As shown in Figure 3,
there are less mis-identifications across different geographical



Model WE EE CMN SSA SA SEA CJK Avg.

w2v-bert-51 (0.6B) 85.3 78.4 72.9 59.1 52.0 65.7 89.7 71.4
mSLAM (0.6B) 84.6 81.3 75.9 62.2 51.7 73.4 87.8 73.3

Table 5. Speech identification - FLEURS speech LangID
baselines, reporting % accuracy (↑) at the language level, and
aggregated by geographical group.

groups (e.g. 67.6% incorrect predictions of SEA languages
were classified as other languages in SEA group), indicating
that separating languages from the others which are in prox-
imity in geography is more challenging.

4.3. Cross-modal Speech-Text Retrieval

In the Speech-to-Text Retrieval task, given an audio sample,
the task is to retrieve its most probable transcription amongst
the text samples in that language’s test set. In the Text-to-
Speech Retrieval task, given a text sample, the task is to re-
trieve the audio sample that most closely corresponds to it,
amongst all the audio samples in that language’s test set. As
user interactions with machines move beyond textual queries,
multi-modal retrieval of documents across the web is of grow-
ing interest [31, 32, 33]. The ability to build fixed-sized vector
representations for queries be it speech, text or images, will
enhance such content retrieval models [34, 35]. FLEURS is a
rich multi-lingual, multi-modal, n-way parallel dataset which
we hope will act as a benchmark to accelerate research in this
field. FLEURS can act as a test-bench for various kinds of
speech-text retrieval scenarios like speech-to-speech, text-to-
text, speech-to-text, and text-to-speech retrieval along with
testing cross-lingual and zero-shot capabilities.

As part of our multilingual baseline, we study the effi-
cacy of pre-trained models towards learning fixed sized repre-
sentations for both speech-to-text and text-to-speech retrieval.
Speech-to-Text Retrieval is given an audio sample, the task is
to retrieve its most probable transcription amongst a set of text
samples. Text-to-Speech Retrieval is given a text, the task is
to retrieve the audio sample that most closely corresponds to
it, amongst a set of audio samples. Given the multi-modal
nature of the task, we only fine-tune the multi-lingual multi-
modal pretrained model, i.e. mSLAM (0.6B), on the train-
ing set from all languages in FLEURS. Following [36, 37],
cross-modal embeddings are trained using the additive mar-
gin softmax loss with in-batch negative sampling. We add bi-
directional loss for retrieving speech given a text query and
vice-versa [36]. We obtain embeddings for the normalized
text (SRC NORM) for all languages.

For evaluating the speech-to-text retrieval task, we report
the % Precision at 1 (P@1) retrieval score of retrieving the
correct text segment given a speech query from a database of
in-domain textual keys collected from the FLEURS test set.
Similarly, for text-to-speech retrieval task, we report the P@1
retrieval score of retrieving any of the speakers who speaks

Task WE EE CMN SSA SA SEA CJK Avg.

Speech-to-Text Retrieval 87.6 91.1 79.4 83.9 67.7 54.8 4.7 76.9
Text-to-Speech Retrieval 83.7 88.3 77.1 83.5 61.4 55.4 4.7 74.4

Table 6. Cross-modal Speech-Text Retrieval - FLEURS
massively multilingual Speech-to-Text and Text-to-Speech
retrieval baselines, reporting % P@1 (↑) score, by geographi-
cal group.

the correct textual query. We report results for both retrieving
text segments from speech queries and speech segments from
textual queries. The summary tables for each geographical
group can be found in Table 6 for both speech-to-text and
text-to-speech retrieval. The detailed retrieval score for each
language can be found in supplement material.

We observe an average P@1 of 76.9% for speech-to-text
retrieval and a P@1 of 74.4% for text-to-speech retrieval. We
observe that P@1 for seen languages in almost all geograph-
ical groups (except SA and SEA) is higher than their unseen
counterparts, as is the case with speech recognition and lan-
guage identification. In particular, we notice a steep degrada-
tion in the retrieval performance on CJK languages. We an-
ticipate this to be the result of tokenization mismatch between
the fine-tuning and the pre-training regime.

We also observe some interesting language specific pe-
culiarities in the retrieval performance. For example, while
Odia (or) is seen in speech, it is unseen in text since it is not
present in the mc4 corpus [26] on which the mSLAM model
was trained. This is exacerbated by Odia’s unique script [38],
which leads to the language being unrepresented in the tok-
enizer. On the other hand, Urdu (ur) is seen in the text pre-
training but unseen in speech. This is interesting because
Urdu performs considerably worse in Text-to-Speech retrieval
compared to Speech-to-Text. We believe this is because Urdu
is phonetically close to other SA languages like Hindi, consis-
tent with our observations in Section 4.1.1, making it hard for
the model to disambiguate speech without pre-training data in
the speech modality.

5. CONCLUSION

We introduced FLEURS, a new dataset for Few-shot Learn-
ing Evaluation of Universal Representations of Speech, in 102
languages. FLEURS is an n-way parallel speech dataset that
can be used to evaluate speech recognition, classification and
retrieval methods. By building up baseline ASR, language
identification and retrieval systems on FLEURS, we show that
it is especially suited to evaluate data-efficient multilingual
pre-trained representations of speech (and text). We hope this
dataset will catalyze research in few-shot tasks in many lan-
guages, enabling progress towards building speech technolo-
gies for the world.
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